

パワーMOSFET 技術資料

目次

はじめにお読みください	3
1. 特性用語一覧	4
1-1. 絶対最大定格 (瞬時であっても超えてはならない値)	4
1-2. 電気的・熱的特性	5
2. 電気的特性	6
2-1. ドレイン・ソース間電王 V _{DSS}	7
2-2. 出力特性 V _{DS} - I _D	7
2-3. 伝達特性 V _{GS} - I _D	7
2-4. オン抵抗 R _{DS(ON)} 特性	8
2-5. R _{DS(on)} - V _{GS} 曲線について	8
2-6. しきい値電圧 V _{TH}	
2-7. 容量特性 Ciss, Crss, Coss	9
2-8. スイッチング特性 td(on), tr, td(off), tf	10
2-9. ゲートチャージ特性 Qg	10
2-10. 安全動作領域 SOA	11
2-11. アバランシェ特性	
2-12. dv/dt, di/dt 特性	
2-13. 静電気耐量 (ESD: Electrostatic Discharge) について	12
2-14. ディレーティング曲線について	12
2-15. アバランシェディレーティング曲線について	13
2-16. 他項目の各種ディレーティングの考え方について	
3. 接合部温度の推定	
3-1. 熱抵抗	
3-1-1. 熱抵抗	14
3-1-2. 過渡熱抵抗	14
3-2. 電力損失の求め方	
3-2-1. 平均電力損失	
3-2-2. 過渡電力損失	
3-3. チャネル部温度 Tch の推定方法	
3-3-1. ヒートシンクなし	15
3-3-2. ヒートシンクあり	
4. 回路上の注意点	_
4-1. ゲート・ソース間電圧 V _{GS}	
4-2. スイッチング時間とドライブ条件	
4-3. ソース・ドレイン間ダイオードについて	16
4-4. 並列接続の注意点	17
4-4-1. 電流バラツキ	17
4-4-2. 寄生発振	
4-4-3. 配線	
4-5. サージの注意点	
5. I _D 定格の考え方について	167

はじめにお読みください

- 1. ご採用に際しては、別途仕様書をご請求の上、ご確認をお願いいたします。
- 2. 本資料に記載されている当社製品の品質水準は、一般的な信頼度が要求される標準用途を意図しています。

その製品の故障や誤動作が直接生命や人体に影響を及ぼすような極めて高い品質、信頼度を要求される特別、特定用途の機器、装置にご使用の場合には必ず事前に当社へご連絡の上、確認を得て下さい。

当社の製品の品質水準は以下のように分類しております。

【標準用途】

コンピュータ、OA 等の事務機器、通信用端末機器、計測器、AV 機器、アミューズメント機器、家電、工作機器、パーソナル機器、産業用機器等

【特別用途】

輸送機器(車載、船舶等)、基幹用通信機器、交通信号機器、防災/防犯機器、各種安全機器、医療機器等 【特定用途】

原子力制御システム、航空機器、航空宇宙機器、海底中継機器、生命維持のための装置、システム等

- 3. 当社は品質と信頼性の向上に絶えず努めていますが、必要に応じ、安全性を考慮した冗長設計、延焼防止設計、誤動作防止設計等の手段により結果として人身事故、火災事故、社会的な損害等が防止できるようご検討下さい。
- 4. 本資料に記載されている内容は、製品改良などのためお断りなしに変更することがありますのでご了承下さい。 製品のご購入に際しましては事前に当社または特約店へ最新の情報をご確認下さい。
- 5. 本資料の使用によって起因する損害または特許権その他権利の侵害に関しては、当社は一切その責任を負いません。
- 6. 本資料によって第三者または当社の特許権その他権利の実施に対する保証または実施権の許諾を行うものではありません。
- 7. 本資料に記載されている製品が、外国為替及び外国貿易管理法に基づき規制されている場合、輸出には同法に基づく日本国政府の輸出許可が必要です。
- 8. 本資料の一部または全部を当社に無断で転載または複製することを堅くお断りいたします。

1. 特性用語一覧

1-1. 絶対最大定格(瞬時であっても超えてはならない値)

表 1-1 絶対最大定格 (特に記載が無い限り Tc=25℃における規定値)

項目	記号	用語の説明
保存温度 Storage temperature	Tstg	素子非動作中に超えてはならない保存周囲温度
チャネル部温度 Channel temperature	Tch	素子動作中に超えてはならないチャネル部温度
ドレイン・ソース間電圧 Drain-source voltage	V _{DSS}	ゲート・ソース間を直流的に短絡した状態で、ドレイン・ソース間に印加 できる電圧の最大ピーク値
ゲート・ソース間電圧 Gate-source voltage	V _{GSS}	ドレイン・ソース間を直流的に短絡した状態で、ゲート・ソース間に印加 できる電圧の最大ピーク値
ドレイン電流 Continuous drain current	I_{D}	全損失の限度内において、ドレインに許容される直流電流の最大値
ドレイン電流(ピーク) Continuous drain current (peak)	I_{DP}	規定されたパルス幅において、パルス動作時に許容されるドレイン電流の 最大ピーク値
ソース電流(直流) Continuous source current (peak)	I _S	全損失の限度内において、ゲート・ソース間を短絡した状態でのソース・ ドレイン間のボディダイオードに許容される順方向電流の最大値
全損失 Total power dissipation	P _T	規定の放熱条件において、素子に連続的に消費させ得る損失の最大値
単発アバランシェ電流 Single avalanche current	I _{AS}	素子がターンオフ状態に移行する際に非繰り返しパルスで許容できるア バランシェ電流の最大値
繰り返しアバランシェ電流 Repetitive avalanche current	I_{AR}	素子がターンオフ状態に移行する際に繰り返しパルスで許容できるアバ ランシェ電流の最大値
単発アバランシェエネルギー Single avalanche energy	E _{AS}	素子がターンオフ状態に移行する際に非繰り返しパルスで許容できるア バランシェエネルギーの最大値
繰り返しアバランシェエネルギー Repetitive avalanche energy	E _{AR}	素子がターンオフ状態に移行する際に繰り返しパルスで許容できるアバ ランシェエネルギーの最大値

表 1-2 絶対最大定格の例 (Tc=25℃)

項目	記号	条件	規格値	単位
保存温度	Tstg		-55 to 150	$^{\circ}$
チャネル温度	Tch		-55 to 150	$^{\circ}$
ドレイン・ソース間電圧	V_{DSS}		100	V
ゲート・ソース間電圧	V _{GSS}		±20	V
ドレイン電流(直流)	I_D		26	Α
ドレイン電流(ピーク)	I_{DP}	Pulse width 10µs, duty=1/100	78	Α
ソース電流(直流)	I_{DS}	V _{SS} =0V		
全損失	P _T		44	W
単発アバランシェ電流	I_{AS}	Starting Tch=25°C Tch≦150°C	19	Α
単発アバランシェエネルギー	E _{AS}	Starting Tch=25°C Tch≦150°C	40	mJ

1-2. 電気的・熱的特性

表 1-3 電気的・熱的特性 (特に記載が無い限り Tc=25℃における規定値)

衣 I J 电X II J 电 X II J L	なかりはは	(村に記載が無い収り IC=25 しにのける税延恒)	
項目	記号	用語の説明	
ドレイン・ソース間降伏電圧	$V_{(BR)DSS}$	ゲート・ソース間を短絡した状態で、規定の条件にてドレイン電流を流した時のドレイン・	
Drain to Source Breakdown Voltage		ソース間の電圧	
ドレイン遮断電流	I _{DSS}	ゲート・ソース間を短絡した状態で、規定の条件にてドレイン・ソース間電圧を印加した時	
Zero Gate Voltage Drain Current		のドレインに流れる電流	
ゲート漏れ電流	I_{GSS}	ドレイン・ソース間を短絡した状態で、規定の条件にてゲート・ソース間に電圧を印加した	
Gate-Source Leakage Current		時のゲート流れる電流	
順伝達コンダクタンス	g _{fs}	規定の条件にて、ドレイン・ソース間電圧及び、ドレイン電流を印加したときの、ゲート・	
Forward transconductance		ソース間電圧の変化に対するドレイン電流変化の比	
ドレイン・ソース間オン抵抗	R _{DS(ON)}	規定の条件にて、素子をオン状態にしたときのドレイン・ソース間の抵抗	
Static Drain-Source On-state Resistance			
ゲートしきい値電圧	V _{TH}	規定の条件にて、素子が導通し始めるのに必要なゲート・ソース間電圧	
Gate Threshold Voltage			
	V _{SD}		
Source-Drain Diode Forward Voltage	130	ドレイン間電圧	
数抵抗	Rth(j-c)	 規定条件にて、定常状態での熱の伝導の度合いを表す数値。FDN電力 1W あたりに接合部と	
Thermal resistance	() 6)	case(ケース)間で生じる温度差。指定の無、場合は、全素子印。	
	Rth(j-a)	規定条件にて、定常状態での熱の伝導の度合、を表す数値。FDD電力1Wあたりに接合部と	
	rai(j u)	ambient(周囲)間で生じる温度差。指定の無い場合は、全素子に加。	
ゲート全電荷量	Qg	規定の条件にて、ゲート・ソース間に電圧をEDDでする際に、ゲート・ソース間電圧がOVか	
Total Gate Charge	Qg	ら規定された値に達するまでの間に必要とするゲート電荷量	
ゲート・ソース電荷量	Ogs	規定の条件にて、ゲート・ソース間に電王をFDDでする際に、ゲート・ソース間電王がOVか	
Gate to Source Charge	Qgs	トラフラットにひよる値に達するまでに必要とするゲート電荷量	
ゲート・ドレイン電荷量	Oad	規定の条件にて、ゲート・ソース間に電王をFDDでする際に、ゲート・ソース間電王がフラッ	
Gate to Drain Charge	Qgd	放送り発出され、ケード・ケース間に配子で印刷する場に、ケード・ケース間配子がフラット 	
	Cinn		
入力容量 Input Capacitance	Ciss	素子の各端子間の容量は次のようになります。	
прис сараскансе		Cgs:ゲート・ソース間容量	
		Cds: ドレイン・ソース間容量	
帰還容量	Crss	Cgd:ゲート・ドレイン間容量	
Reverse Transfer Capacitance		各容量は次のようになります。	
		Ciss: Cgs+Cgd 規定の条件にて、ドレイン・ソース間が交流的に短絡されて	
		いる状態でのゲート・ソース間入力静電容量	
出力容量	Coss	Crss: Cgd 規定の条件におけるドレイン・ゲート間籍容量	
Output Capacitance		Coss: Cds+Cgd 規定の条件にて、ゲート・ソース間が交流的に短絡されてい	
		る状態でのドレイン・ソース間出力静電容量	
ターンオン遅延時間	td(on)	規定の条件にて、ゲート・ソース間電圧皮肝がピーク値の 10%に上昇した時点から、ドレ	
Turn-on Delay Time		イン・ソース間電圧皮形がピーク値の 90%に下降するまでの時間。 または、ゲート・ソー	
		ス間電圧波形がピーク値の10%に上昇した時点から、ドレイン電流波形がピーク値の10%	
		に上昇するまでの時間	
上昇時間	tr	規定の条件にて、ドレイン・ソース間電田皮形がピーク値の90%から10%に下降するまで	
Rise Time		の時間。または、ドレイン電流皮形がピーク値の10%から90%に上昇するまでの時間。	
ターンオフ遅延時間	td(off)	規定の条件にて、ゲート・ソース間電圧波がピーク値の 90%に下降した時点から、ドレ	
Turn-off Delay time		イン・ソース間電圧波形がピーク値の 10%に上昇するまでの時間。または、ゲート・ソー	
		ス間電圧がピーク値の90%に下降した時点から、ドレイン電流放射がピーク値の90%に下	
		降するまでの時間。	
降下時間	tf	規定の条件にて、ドレイン・ソース間電圧波がピーク値の10%から90%に上昇するまで	
Fall Time		の時間。またはドレイン電流研がピーク値の90%から10%に下降するまでの時間。	
ダイオード逆呼息時間	trr	規定の条件にて、逆回復電流が流れ始めた時点から、逆回復電流が規定された値に達するま	
Diode Reverse Recovery Time		での時間。	
ダイオード逆回復電荷量	Qm	規定の条件にて、逆回復電流が流れ始めた時点から、逆回復電流が規定された値に達するま	
Diode Reverse Recovery Charge		での間の逆回復電流の時間積分値	

2. 電気的特性

パワーMOSFET は電圧制御型の素子であり、ゲート電極に電圧を印加することで、ドレイン・ソース間に電流が流れます。

このため V_{DS} - I_D (ドレイン・ソース間電圧とドレイン電流)特性にはゲート電圧(V_{CS})依存性があり、図 1-1 のような特性となります。

 V_{GS} を 0 V から上昇させることで、ドレイン電流(I_D)が流れ始めますが、ドレイン電圧(V_{DS})が印加された状態で I_D が流れるため、 V_{DS} $\times I_D$ の電力が発生し、損失となります。

このとき V_{DS} の最小値がオン抵抗($R_{DS(ON)}$) $\times I_D$ となり、パワー MOSFET において $R_{DS(ON)}$ は重要なパラメータとなります。

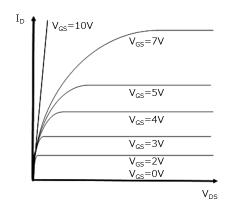


図 2-1 パワーMOSFET の電流電圧特性の例

表 2-1 パワーMOSFET の定格表 (例)

T 0	-3.5	5 (1)	規格値			
項目	記号	条件 	MIN	TYP	MAX	単位
ドレイン・ソース間降伏電圧	$V_{(BR)DSS}$	I _D =1mA	40	-	-	V
ドレイン遮断電流	I_{DSS}	V _{DS} =40V, V _{GS} =0V	-	-	-	μΑ
ゲート漏れ電流	I_{GSS}	V _∞ =±20V, V _{DS} =0V	-	-	±0.1	μΑ
順伝達コンダクタンス	g _{fs}	I _D =70A, V _{DS} =10V	30	-	-	S
ドレイン・ソース間オン抵抗	R _{DS(ON)}	I _D =70A, V _{GS} =10V	-	0.00117	0.00142	Ω
ドレイン・ソース間オン抵抗	R _{DS(ON)}	I _D =70A, V _{GS} =4.5V	-	0.00185	0.0025	Ω
ゲートしきい値電圧	V_{th}	I _D =1mA, V _{DS} =10V	1.5	2	2.5	V
ソース・ドレイン間ダイオード順電圧	V_{SD}	I _S =140A, V _{GS} =0V	-	-	1.5	V
熱抵抗	Rth(j-c)	Junction to case, with heatsink	-	-	0.69	°C/W
	Rth(j-a)	Junction to ambient			100	°C/W
ゲート全電荷量	Qg	V_{DD} =32V, V_{GS} =10V, I_D =140A	-	122	-	nC
ゲート・ソース電荷量	Qgs	V_{DD} =32V, V_{GS} =10V, I_D =140A	-	24	-	nC
ゲート・ドレイン電荷量	Qgd	V_{DD} =32V, V_{GS} =10V, I_D =140A	-	37	-	nC
入力容量	Ciss	V _{DS} =25V, V _{GS} =0V, f=1MHz	-	6630	-	pF
帰還容量	Crss	V _{DS} =25V, V _{GS} =0V, f=1MHz	-	405	-	pF
出力容量	Coss	V _{DS} =25V, V _{GS} =0V, f=1MHz	-	805	-	pF
ターンオン遅延時間	td(on)	$I_D=70A$, $R_L=0.29\Omega$, $V_{DD}=20V$, $R_G=0\Omega$, $V_{\infty}(+)=10V$, $V_{\infty}(-)=0V$	-	7.5	-	ns
上昇時間	tr	$I_D=70A$, $R_L=0.29\Omega$, $V_{DD}=20V$, $R_G=0\Omega$, $V_{GS}(+)=10V$, $V_{GS}(-)=0V$	-	18	-	ns
ターンオフ遅延時間	td(off)	$I_D=70A$, $R_L=0.29\Omega$, $V_{DD}=20V$, $R_G=0\Omega$, $V_{GS}(+)=10V$, $V_{GS}(-)=0V$	-	139	-	ns
降下時間	tf	I_D =70A, R_L =0.29 Ω , V_{DD} =20V, R_G =0 Ω , V_{GS} (+)=10V, V_{GS} (-)=0V	-	51	-	ns
ダイオード逆回復時間	trr	I _F =140A, V _{GS} =0V, di/dt=100A/μs	-	44	-	ns
ダイオード逆回復電荷量	Qrr	I _F =140A, V _{GS} =0V, di/dt=100A/μs	-	52	-	nC

2-1. ドレイン・ソース間電圧 V_{DSS}

ドレイン・ソース間電圧 V_{DSS} は温度依存があり、低温時には低下します。 この点について留意して使用する必要があります。

2-2. 出力特性 V_{DS} - I_D

一般的な MOSFET の出力特性(例1)を図2-2 に示します。

縦軸をドレイン電流 I_D 、横軸をドレイン電圧 V_{DS} としたグラフで表しています。

MOSFET の出力特性には線形領域と飽和領域があります。

線形領域	ドレイン・ソース間電圧 V _{DS} が増加すると ドレイン電流 I _D が増加する領域
飽和領域	ドレイン・ソース間電圧 V_{DS} によらずドレイン電流 I_{D} が一定となる領域

パワーMOSFETの出力特性の例を図2-3に示します。

パワーMOSFET は一般的な MOSFET と比較し、ゲート電圧 V_{CS} に対する応答がよくオン抵抗 $R_{DS(ON)}$ が低いため、出力特性に現れる飽和領域はほぼありません。

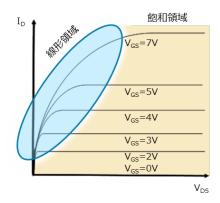
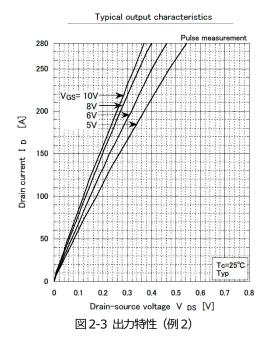
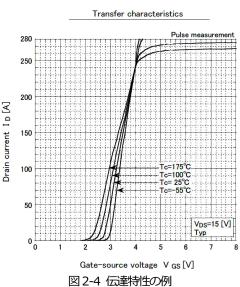



図 2-2 出力特性(例 1)



2-3. 伝達特性 V_{GS} - I_D

伝達特性 V_{GS} - I_D とは、ドレイン・ソース間電圧 V_{DS} を一定とした時に、どれぐらいのゲート・ソース間電圧を印加すれば所望のドレイン電流 I_D を流すことができるかを表した特性です。

ゲート・ソース間電圧 V_{CS} が増加すると、チャネルに集まる電子の密度が高くなるので、チャネルの電気抵抗が低くなり、より大きな電流が流れます。

また伝達特性には温度特性があり、一般的には温度が高い方が同じ V_{CS} でもより大きな電流が流れます。

2-4. オン抵抗 R_{DS(ON)}特性

オン抵抗 $R_{DS(ON)}$ は V_{DS}/I_D で表されるパラメータであり、 \boxtimes 2-3の出力特性の傾きのことを指します。

 $R_{DS(ON)}$ は電流 I_D に対してある程度一定の値となりますが、大きい I_D の領域において上昇する傾向を持ちます。

これは電流の流す道筋において、最大で流すことのできる電流があり、そこを超えると電流が流しづらくなるためです。

また、 $R_{DS(ON)}$ は図 2-6 のように温度特性があり、高温時は $R_{DS(ON)}$ が上昇するため、発熱計算においては注意する必要があります。

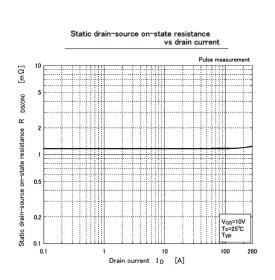


図 2-5 R_{DS(ON)}の電流特性の例

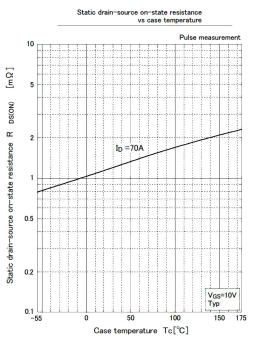


図 2-6 R_{DS(ON)}の温度特性の例

2-5. R_{DS(on)} - V_{GS}曲線について

オン抵抗 $R_{DS(on)}$ はゲート電圧 V_{GS} 依存性があり、低い V_{GS} では上昇します。

この上昇する V_{GS} はしきい値電圧 V_{TH} に依存しており、 V_{TH} は負の温度依存性があるため、低温では高電圧側にシフトし、高温では定電圧側にシフトします。

この温度依存性を考慮して、ゲート電極に印加する電圧を適切に判断する必要があります。

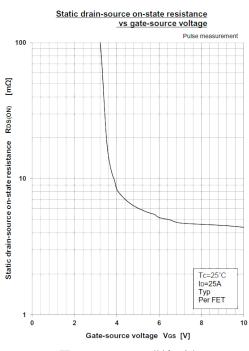
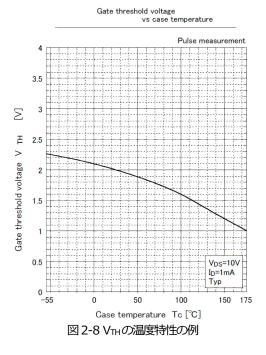


図 2-7 R_{DS(on)}-V_{GS}曲線の例



2-6. しきい値電圧 V_{TH}

しきい値電圧 V_{TH}はドレイン・ソース間に規定電流が流れるときのゲ ート電圧を指します。

このため、この電圧でデジタル的にオン・オフする電圧ではありませ ん。また、 V_{TH} は温度特性を持っており、高温時には下降し、低温時 には上昇します。

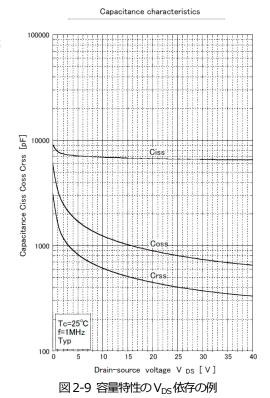
このため、低温時のオン動作時・高温時のオフ動作時にはゲート電圧 V_{GS}の値に注意する必要があります。

2-7. 容量特性 Ciss, Crss, Coss

容量特性の入力容量 Ciss、帰還容量 Crss、出力容量 Coss は下記の式 で表されます。

 $Ciss = C_{GS} + C_{GD}$

Crss=C_{GD}


 $Coss = C_{DS} + C_{GD}$

C_{GS}: ゲート・ソース間容量

C_{GD}: ゲート・ドレイン間容量

C_{DS}: ドレイン・ソース間容量

なお、図 2-9 に示すとおり、容量特性には V_{DS} 依存がありますので ご注意ください。

2-8. スイッチング特性 td(on), tr, td(off), tf

スイッチング特性は下記の4つの時間に分けて定義されます。

ターンオン遅延時間:t_{d(on)}

 V_{GS} の立ち上がり時の 10%に上昇した時点を起点に V_{DS} が 90%まで低下した時間。

上昇時間:t_r

V_{DS}が90%から10%まで低下した時間。

ターンオフ遅延時間:t_{d(off)}

 V_{GS} が 90%まで低下した時間を起点に V_{DS} が 10%まで上昇した時間。

降下時間:t_f

V_{DS}が10%から90%まで上昇した時間。

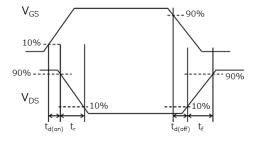


図 2-10 スイッチング時間の定義

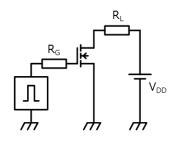


図 2-11 スイッチング測定回路

2-9. ゲートチャージ特性 Qg

ゲートチャージ特性はゲート電極に一定電流を流したときに、規定の ゲート電圧 V_{GS} に達するまでの時間を計測して定義されます。 なお、ゲートチャージ特性は3つのパラメータで表されます。

000	だ し面板に面にたいかい ナックラニ 抑制の
Qgs	ゲート電極に電圧を印加してからミラー期間の
	手前までの電荷量
Qgd	ミラー期間の電荷量
Qg	ゲート電極を印加してから規定のゲート電圧
	V _{GS} まで達するまでの電荷量

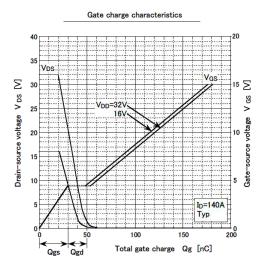


図2-12 ゲートチャージ特性の例

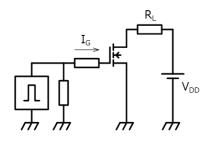


図 2-13 ゲートチャージ測定回路

2-10. 安全動作領域 SOA

安全動作領域 SOA とは Safe Operating Area の略で、MOSFET が安全に動作できる $V_{DS} \cdot I_D$ の領域を表します。

このため MOSFET の動作条件に関して SOA の範囲内で使用する必要があります。

元々、従来のMOSFET の SOA にはバイポーラトランジスタに存在する二次降伏領域は無く、ドレイン・ソース間電圧の定格とドレイン電流の定格とその熱抵抗制限領域のみが規定されていました。

しかしながら、昨今の製品では微細化等によって MOSFET にも電流 集中による二次降伏に相当する第5の領域が存在するようになり、現 在では右図のように5つの領域に分けられることのほうが多く、この 領域内且つ適切な各種ディレーティング(サージ等を含めた電圧/電 流/電力/接合温度)を取ることで安全に動作させられることができ ます。

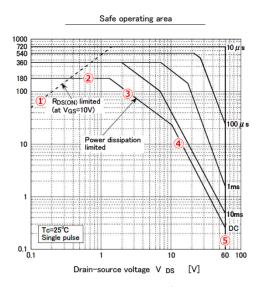
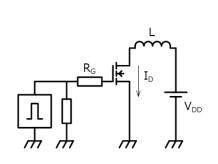


図 2-14 安全動作領域の例

したがって MOSFET の動作軌跡が SOA 内に確実に収まっているか慎重な確認が必要になってきています。


なお、SOA は下記の5つの領域によって表現されます。

- ① R_{DS(ON)}制限領域: R_{DS(ON)}max による制限
- ② I_D制限領域:絶対最大定格のI_Dによる制限
- ③ 全損失制限領域:絶対最大定格の全損失による制限
- ④ 二次降伏制限領域:バイポーラトランジスタの二次降伏に似た制限
- ⑤ ドレイン・ソース間電圧 V_{DSS} 制限領域: 絶対最大定格の V_{DSS} による制限

2-11. アバランシェ特性

インジェクタやイグナイタなどに MOSFET を使用すると、オフしたときにインダクタンス(L)成分の逆起電力によって大きな電圧が発生し、MOSFET の耐圧を超えて印加されることをアバランシェ状態と言います。

このときどれぐらいのエネルギーが許容されるかが絶対最大定格の単発アバランシェエネルギーEAsとなります。

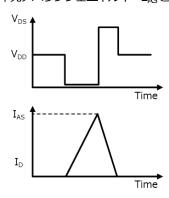


図 2-15 アバランシェ測定回路とアバランシェ波形の例

2-12. dv/dt, di/dt 特性

内蔵ダイオードに順電流が流れている状態で、逆方向に電圧を反転させると逆回復動作に入ります。この時の単位時間当たりの電流の下降度合いをdi/dt、単位時間当たりの電圧の上昇度合いをdv/dtと呼びます。

指定の条件下でのリカバリー電流時間を逆回復時間 trr、電荷量を逆回復電荷量 Qrr と呼びます。

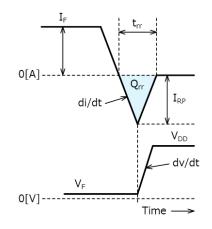


図2-16 リカバリー電流、電圧波形の例

2-13. 静電気耐量(ESD: Electrostatic Discharge)について

静電気耐量(ESD)について MOSFET で議論されるモードは以下のものがあります。

人体帯電モデル(HBM):人体が帯電していて MOSFET の電極に静電気が放電されるモード デバイス帯電モデル(CDM): デバイス自身が帯電し、グラウンド等に静電気が放電されるモード

なお、MOSFET においてはゲートが薄い絶縁膜を介して構成されており、これにより ESD に対してゲート端子が最も弱い端子となるため、お取り扱いにご注意ください。

2-14. 全損失ディレーティング曲線について

め、ご使用環境のT_Cに変換して使用する必要があります。 これが全損失ディレーティング曲線になります。 全損失の温度ディレーティング曲線の例を図 2-17 に示します。 絶対最大定格のP_Tを全損失ディレーティング曲線により印加可能 なP_Tを算出し、印加されるドレイン電流 I_D とオン抵抗 R_{DS(ON)}に よって算出された電力を比較し、判定いたします。

通常データシートに記載される SOA は T_C=25℃で規定されるた

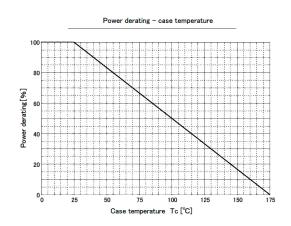


図 2-17 全損失ディレーティング曲線の例

2-15. アバランシェディレーティング曲線について

絶対最大定格に記載の単発アバランシェエネルギーE_{AS}はスタートチャネル温度が 25℃のため、ご使用環境のスタートチャネル温度 に変換して使用する必要があります。

これがアバランシェディレーティング曲線です。

絶対最大定格のE_{AS}をアバランシェディレーティング曲線によって EDM可能なアバランシェエネルギーを算出し、EDMOされるアバラン シェエネルギーを比較し、判定いたします。

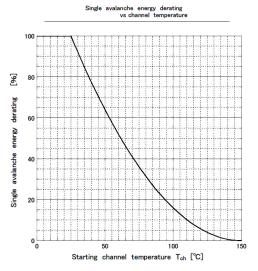


図2-18 アバランシェディレーティング曲線

2-16. 他項目における各種ディレーティングの考え方について

最大定格に対してどの程度のディレーティングを行うかは、信頼性設計の中で大変重要な問題になります。

システム設計の段階で考慮していただきたいそれら項目は、半導体デバイスの種類により少しずつ異なり、電圧、電流、電力、負荷等の電気的ストレスのディレーティング、温度、温度などの環境条件、あるいは振動、衝撃などの機械的ストレスのディレーティングなどであります。

ディレーティングの基準について、お客様のセットの設計段階で考慮されることが信頼性確保の上で望ましく、基準内に設定することが困難な場合については、最大定格のより大きな半導体デバイスを選定する等考慮される必要性があります。

製品の使用条件 (使用温度/電流/電圧など) が絶対最大定格以内での使用においても、高負荷状態 (高温および大電流/高電圧印加、多大な温度変化など) で連続して使用される場合は、信頼性が著しく低下するおそれがあります。

個別信頼性情報(信頼性試験レポート、推定故障率など)をご確認の上、適切な信頼性設計をお願いします。

3. 接合部温度の推定

3-1. 熱抵抗

3-1-1. 熱抵抗

熱抵抗とは温度の伝えにくさを表す値で、単位時間での発熱量あたりの温度上昇量を意味します。単位は℃/Wで表されます。発熱に関しては便宜的に図3-1のような等価回路で表され、発熱点で発した熱が、チップの熱抵抗Rth(チップ)、はんだの熱抵抗Rth(はんだ)、ケースの熱抵抗Rth(ケース)を通って熱が伝わります。このときの接合部・ケース間の熱抵抗Rth(j-c)を求めます。

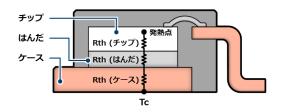


図 3-1 発熱に関する疑似的等価回路

接合部・ケース間の熱抵抗 Rth(j-c) = Rth(チップ) + Rth(はんだ) + Rth(ケース)

3-1-2. 過渡熱抵抗

過度熱抵抗とは単位時間あたりの電力損失に対する温度上昇値を 意味します。発熱に関しては便宜的に図3-2のような等価回路 で表され、発熱点で発熱した熱が時間を経るごとに伝導し、各部 位の熱抵抗を通過するにしたがって上昇します。

発熱点で発した熱が、チップの過度熱抵抗 Zth(チップ)、はんだの過度熱抵抗 Zth(はんだ)、ケースの過度熱抵抗 Zth(ケース)を通って熱が伝わります。このときの接合部・ケース間の過度熱抵抗 Zth(j-c)を求めます。

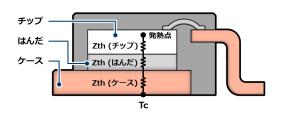


図 3-2 過度の発熱に関する疑似的等価回路

接合部・ケース間の過渡熱抵抗 Zth(j-c) = Zth(チップ) + Zth(はんだ) + Zth(ケース)

3-2. 電力損失の求め方

3-2-1. 平均電力損失

MOSFET のドレイン・ソース間の電圧 V_{DS} と MOSFET に流れる電流 I_D の積による電力の時間積分し、1 周期分の時間 (TW)によって平均化することにより、平均電力損失 Pave を求めます。

平均電力損失 Pave = $\int V_{DS} \cdot I_{D} dt/TW$

3-2-2. 過渡電力損失

電力印加時の過渡的な電力損失は、MOSFET のドレイン・ソース間の電圧 V_{DS} と MOSFET に流れる電流 I_D の積による電力の時間積分し、印加時間(T)によって平均化することにより、過渡的な電力損失 P を求めます。

過渡電力損失 $P = \int V_{DS} \cdot I_{D} dt/T$

尚、各損失の詳細な求め方は別途技術資料 TN1_MOSFET_10_JP をご参照ください。

3-3. チャネル部温度 Tch の推定方法

3-3-1. ヒートシンクなし

定常状態

接合部・ケース間の熱抵抗 Rth(j-a)と平均電力損失 Pave により、チャネル部温度 Tch を求めます。

② 過度状態抗

接合部・ケース間の過渡熱抵抗 Zth(j-c)と過渡電力損失 P により、チャネル部温度 Tch を求めます。

過度熱抵抗 Zth(j-c)の値は図 3-3 過度熱抵抗特性図の例を使用します。

チャネル部温度
$$Tch = Zth(j-c) \times P + T_C$$
 $(T_C$ はケース温度)

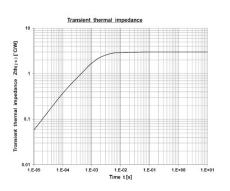


図 3-3 過度熱抵抗特性図の例

3-3-2. ヒートシンクあり

疑似的等価回路図は図3-4のようになります。

ケース温度 T_c を測定することで、チャネル部温度を求めます。 ヒートシンクありの場合の定常状態と過渡状態のチャネル部、温度 Tch の算出はヒートシンクなしと違い Rth(j-c)を使用する下記式となります

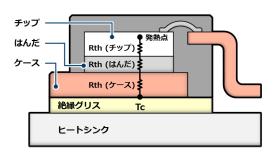


図3-4 定常状態ヒートシンクあり疑似的等価回路

チャネル部温度 $Tch = Rth(j-c) \times P_{ave} + T_C$ $(T_C はケース温度)$

尚、各損失の詳細な求め方は別途技術資料 TN1_MOSFET_10_JP をご参照ください。

4. 回路上の注意点

4-1. ゲート・ソース間電圧 V_{GS}

MOSFET は図 4-1 の MOSFET 出力特性の線形領域で使用することで、低いオン抵抗で使用可能となります。

ゲート・ソース間に印加される電圧 V_{CS} はしきい値電圧 V_{TH} 以上の高い電圧で電流を流すことができますが、より高い V_{CS} を印加することでより低いオン抵抗で使用することが可能です。

ただし、より高い V_{GS} で使用する場合にはドライブ損失が大きくなるため適切な V_{GS} での使用をご検討ください。

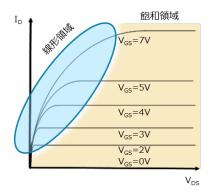


図4-1 MOSFET 出力特件の例

4-2. スイッチング時間とドライブ条件

MOSFET は電圧駆動デバイスのため、高速スイッチングに適正のあるデバイスです。しかし、高速スイッチングをする際にノイズやサージが発生する場合がありますので、図 4-2 のように MOSFET のゲート端子に抵抗 R_G を追加することでノイズやサージを低減することができます。ただし、 R_G を追加した場合にはスイッチング時間が長くなりますの、適切な R_G での使用をご検討ください。

また、一般的に MOSFET のスイッチング動作において、オフ側のスイッチング時間が長いと、損失が増えるため、図 4-3 のように R_G に並列にダイオードや抵抗を追加することで、スイッチング損失は小さくなります。ノイズとスイッチング損失やスイッチング時間を考慮しながら、最適なゲート回路をご検討ください。

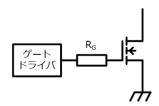


図 4-2 ゲート駆動回路 1

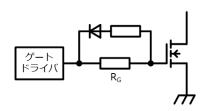


図4-3 ゲート駆動回路 2

4-3. ソース・ドレイン間ダイオードについて

- 1) MOSFET ではその構造上、ソース・ドレイン間に寄生素子として PN 接合ダイオード(ボディーダイオード)が図 4-4 のように形成されます。このためボディーダイオードダイオードに電流を流して使用される場合には、その発熱についてご注意ください。
- 2) 図4-5 は MOSFET を使ったインバータ回路例です。
 この回路では Q1 と Q4 がオンして、電流①が流れます。次に Q1 をオフすると、Q2 のボディーダイオードを通して電流②が還流します。その後 Q1 をオンにすると、Q2 のボディーダイオードが逆回復するまでの時間 (trr)、短絡電流③が Q1 から Q2 に流れて、この損失により熱が発生します。インバータ回路に MOSFET を使用する場合、ボディーダイオードには逆回復時間 trr の短いものを使用してください。

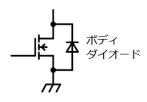


図4-4 内部等価回路

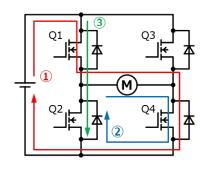


図4-5 インバータ回路例

4-4. 並列接続の注意点

MOSFET はバイポーラトランジスタに比べて、図 4-6 のように並列接続することで比較的容易に大電流化が可能です。

各ゲート端子に抵抗 R_G を入れ、赤と青の配線は出来る限り同じ長さにしてください。並列接続する際は以下を考慮してください。

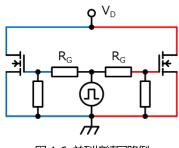


図 4-6 並列接続回路例

4-4-1. 電流バラツキ

① オン抵抗 R_{on}によるバラツキ

スイッチング期間以外での MOSFET 並列接続時の電流は、オン抵抗に反比例して流れます。

つまり、オン抵抗が最も低いデバイスに最も多くの電流が流れますが、MOSFET のオン抵抗は正の温度係数を持つため、このバラツキが補償され比較的電流が均等になるように流れます。

よって、熱結合をしない場合でも、ある程度の電流バランスは保てます。

② ゲートしきい値電圧 Vm によるバラつき

一般に、電流アンバランスはスイッチング動作におけるオンとオフの過度時に問題となります。これは MOSFET のスイッチング時間の差に起因します。このスイッチング時間のバラつきは、ゲートしきい値電圧 V_{th} に大きく依存します。すなわち、V_{th} が小さい程早くターンオンを開始し、逆にオフ時は V_{th} の大きいもの程早くターンオフを開始します。このことから、オン時、オフ時ともに V_{th} の低い MOSFET に一時的に電流が集中して電流アンバランスが発生します。特にハードスイッチングの場合、この電流アンバランスは素子の電流定格、または、素子の温度使用定格を超えて破壊を招くことがありますので、電流アンバランスを考慮した素子を選定してください。

ソフトスイッチングの場合は ZVS(ゼロ電圧スイッチング)/ZCS(ゼロ電流スイッチング)効果により V_{th} のバラツキによる影響は少なくなります。

4-4-2. 寄生発振

MOSFET のゲートを直接に並列接続すると、発振現象が起きやすくなります。この現象はミラー容量による帰還電流がゲート共通インピーダンスを流れ、帰還電圧が大きくなって発振しやすくなります。

また、帰還電圧は各 MOSFET によって増幅されます。この発振電圧がゲート耐圧を超えると破壊しますし、ドレイン電流・電圧に発振成分が重畳し損失が増大します。ご使用の際は、必ず、MOSFET の各ゲートに直列の抵抗を挿入し、さらに必要に応じてフィルターコア、フェライトビーズ等を挿入して下さい。

4-4-3. 配線

MOSFET を並列に接続する時、各端子の配線を均等にする必要があります。

特にソース端子側では、配線インダクタンス Ls(図 4-7)にソース 電流 Is が流れることで発生する逆起電圧 Vs=Ls×dIs/dt が、ゲート・ソース間電圧に作用し MOSFET のオン時のドレイン電流バランスに大きな影響を与えます。

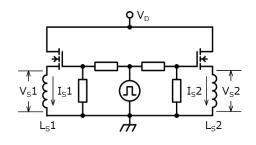


図 4-7 配線インダクタンスを含む並列接続回路例

4-5. サージの注意点

回路動作上サージ電圧が発生する場合には、MOSFETの定格電圧 (ドレイン・ソース間電圧 V_{DSS},ゲート・ソース間電圧 V_{GSS})を超 えないように使用してください。なお、過渡的な電圧を吸収する作 用のあるスナバ回路例(図 4-8)を使用することで、サージを抑制 することができます。

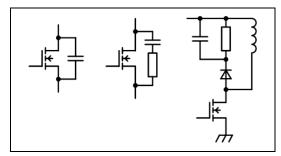


図4-8 スナバ回路例

5. ID 定格について

昨今の低耐圧 MOSFET の電流定格 I_{D(DC)}は、実際使用できる定格より遥かにかけ離れたシリコン物性限界値等より設定された非現実的な高い I_D 定格電流値を謳っている場合があり、お客様のセット設計における MOSFET の印加可能電流の設定に苦慮されるケースが散見されているようです。

しかし、新電元工業の MOSFET では、各 MOSFET の $R_{DS(on)}$ 値、Rth(j-c)、ワイヤもしくはクリップボンドなどの製品組立 状態などの実力値とそのマージンを加味し事実に則った設定となっております。